Bouncing Ball Problem and Geometric Series
Bouncing Ball Problem and Geometric Series

A Motivating Example for Module 3

Project Description

This project demonstrates the following concepts in integral calculus:

1. Sequences.
2. Sum of a geometric progression.
3. Infinite series.

Numeric Example

In my experiment, the ball was dropped from a height of 6 feet and begins bouncing. The height of each bounce is three-fourths the height of the previous bounce. Find the total vertical distance travelled by the ball.

Solution When the ball hits the ground for the first time, it has traveled a distance $D_1 = 6$ feet. For subsequent bounces, let D_i be the distance traveled up and down. For example, D_2 and D_3 are

$$D_2 = 6 \left(\frac{3}{4} \right) + 6 \left(\frac{3}{4} \right) = 12 \left(\frac{3}{4} \right)$$

up + down

and

$$D_3 = 6 \left(\frac{3}{4} \right) \left(\frac{3}{4} \right) + 6 \left(\frac{3}{4} \right) \left(\frac{3}{4} \right) = 12 \left(\frac{3}{4} \right)^2$$
By continuing this process, it can be determined that the total vertical distance is

\[D = 6 + 12 \left(\frac{3}{4} \right) + 12 \left(\frac{3}{4} \right)^2 + 12 \left(\frac{3}{4} \right)^3 + ... \]

\[= 6 + 12 \sum_{n=0}^{\infty} \left(\frac{3}{4} \right)^{n+1} \]

\[= 6 + 12 \left(\frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{3}{4} \right)^n \right) \]

\[= 6 + 9 \left[\frac{1}{1 - (3/4)} \right] \]

\[= 6 + 9(4) = 42 \text{ feet.} \]

Your Assignment

1. Obtain a ball (e.g. a tennis ball or racket ball).
2. Drop the ball from a height \(h \) at your choice.
3. Find the ratio of the maximum height \(h_1 \) to which the ball bounces back to the initial height \(h \) from which the ball was released.
4. Assume that the ratio found in part (3) remains constant for subsequent bounce ups.
5. Obtain a formula that will provide the total vertical distance traveled by the vertically bouncing ball from initial release to a full stop.