Kettering University Mathematics Olympiad For High School Students 2009

1. Prove that if a, b, c, d are real numbers, then
 \[\max\{a + c, b + d\} \leq \max\{a, b\} + \max\{c, d\} \]

2. Find the smallest positive integer whose digits are all ones which is divisible by 3333333.

3. Find all integer solutions of the equation
 \[\sqrt{x} + \sqrt{y} = \sqrt{2560}. \]

4. Find the irrational number:
 \[A = \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \cdots}}} \]

 (n square roots).

5. The Math country has the shape of a regular polygon with N vertexes. N airports are located on the vertexes of that polygon, one airport on each vertex. The Math Airlines company decided to build K additional new airports inside the polygon. However the company has the following policies: (i) it does not allow three airports to lie on a straight line, (ii) any new airport with any two old airports should form an isosceles triangle. How many airports can be added to the original N?

6. The area of the union of the n circles is greater than $9m^2$ (some circles may have non-empty intersections). Is it possible to choose from these n circles some number of non-intersecting circles with total area greater than $1m^2$?